
Generators and Lambda Function 

Fantastic Beasts Generators and where to find them 
A Python generator is a piece of specialized code able to produce a series of values, and to 
control the iteration process. This is why generators are very often called iterators, and 
although some may find a very subtle distinction between these two, we'll treat them as 
one. 

You might now have realized, but you’ve encountered generators many, many time before. 

for i in range(5): 

    print(i) 

The 𝑟𝑎𝑛𝑔𝑒() function is, in fact, a generator, which is (in fact, again) an iterator. 

What is the difference? 

A function returns one, well-defined value, it may be the result of a more or less complex 
evaluation of, e.g., a polynomial, and is invoked once, only once. 

A generator returns a series of values, and in general, is (implicitly) invoked more than once. 

 

In the example, the 𝑟𝑎𝑛𝑔𝑒() generator is invoked six times, providing five subsequent 
values from zero to four, and finally signaling that the series is complete. 

The above process is completely transparent. 

 

The iterator protocol is a way in which an object should behave to conform to the rules 
imposed by the context of the 𝑓𝑜𝑟 and 𝑖𝑛 statements. An object conforming to the iterator 
protocol is called an iterator. 

 

An iterator must provide two methods: 

• __𝑖𝑡𝑒𝑟__() which should return the object itself and which is invoked once (it's 
needed for Python to successfully start the iteration) 

• __𝑛𝑒𝑥𝑡__() which is intended to return the next value (first, second, and so on) of 
the desired series - it will be invoked by the 𝑓𝑜𝑟/𝑖𝑛 statements in order to pass 
through the next iteration. If there are no more values to provide, the method 
should raise the 𝑆𝑡𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 exception. 

 

Here is an example of Fibonacci numbers (Fibi) (Fibonacci number - Wikipedia). 

class Fib: 

    def __init__(self, num): 

        print("__init__") 

        self.__n = num 

        self.__i = 0 

        self.__p1 = self.__p2 = 1 

 

    def __iter__(self): 

        print("__iter__") 

        return self 

 

    def __next__(self): 

        print("__next__") 

https://en.wikipedia.org/wiki/Fibonacci_number


        self.__i += 1 

        if self.__i > self.__n: 

            raise StopIteration 

        if self.__i in [1, 2]: 

            return 1 

        ret = self.__p1 + self.__p2 

        self.__p1, self.__p2 = self.__p2, ret 

        return ret 

 

for i in Fib(5): 

    print(i) 

 

Let’s analyze the code: 

• Lines 2 to 6: the class constructor prints a message (we'll use this to trace the class's 
behavior), prepares some variables (__𝑛 to store the series limit, __𝑖 to track the 
current Fibonacci number to provide, and __𝑝1 along with __𝑝2 to save the two 
previous numbers). 

• Lines 8 to 10: the __𝑖𝑡𝑒𝑟__ method is obliged to return the iterator object itself; its 
purpose may be a bit ambiguous here, but there's no mystery. Try to imagine an 
object which is not an iterator (e.g., it's a collection of some entities), but one of its 
components is an iterator able to scan the collection; the __𝑖𝑡𝑒𝑟__ method should 
extract the iterator and entrust it with the execution of the iteration protocol; as 
you can see, the method starts its action by printing a message. 

• Lines 12 to 21: the __𝑛𝑒𝑥𝑡__ method is responsible for creating the sequence. It's 
somewhat wordy, but this should make it more readable. First, it prints a message, 
then it updates the number of desired values, and if it reaches the end of the 
sequence, the method breaks the iteration by raising the 𝑆𝑡𝑜𝑝𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 exception; 
the rest of the code is simple, and it precisely reflects the definition we showed you 
earlier. 

Expected output: 

__init__ 

__iter__ 

__next__ 

1 

__next__ 

1 

__next__ 

2 

__next__ 

3 

__next__ 

5 

__next__ 

The iterator object is instantiated first. 

Next, Python invokes the __𝑖𝑡𝑒𝑟__ method to get access to the actual iterator. 

The __𝑛𝑒𝑥𝑡__ method is invoked six times - the first five times produce useful values, while 
the eleventh terminates the iteration. 



 

 

class Fib: 

    def __init__(self, nn): 

        self.__n = nn 

        self.__i = 0 

        self.__p1 = self.__p2 = 1 

 

    def __iter__(self): 

        print("Fib iter") 

        return self 

 

    def __next__(self): 

        self.__i += 1 

        if self.__i > self.__n: 

            raise StopIteration 

        if self.__i in [1, 2]: 

            return 1 

        ret = self.__p1 + self.__p2 

        self.__p1, self.__p2 = self.__p2, ret 

        return ret 

 

class Class: 

    def __init__(self, n): 

        self.__iter = Fib(n) 

 

    def __iter__(self): 

        print("Class iter") 

        return self.__iter; 

 

object = Class(8) 

for i in object: 

    print(i) 

The previous example shows you a solution where the iterator object is a part of a more 
complex class. 

We've built the 𝐹𝑖𝑏 iterator into another class (we can say that we've composed it into the 
𝐶𝑙𝑎𝑠𝑠 class). It's instantiated along with 𝐶𝑙𝑎𝑠𝑠's object. 

The object of the class may be used as an iterator when (and only when) it positively 
answers to the __𝑖𝑡𝑒𝑟__ invocation - this class can do it, and if it's invoked in this way, it 
provides an object able to obey the iteration protocol. 

This is why the output of the code is the same as previously, although the object of the 𝐹𝑖𝑏 
class isn't used explicitly inside the 𝑓𝑜𝑟 loop's context. 

Expected output: 

Class iter 

1 

1 

2 



3 

5 

8 

13 

21 

The 𝑦𝑖𝑒𝑙𝑑 statement 
The iterator protocol isn't particularly difficult to understand and use, but it is also 
indisputable that the protocol is rather inconvenient. 

The main discomfort it brings is the need to save the state of the iteration between 
subsequent __𝑖𝑡𝑒𝑟__ invocations. 

For example, the 𝐹𝑖𝑏 iterator is forced to precisely store the place in which the last 
invocation has been stopped (i.e., the evaluated number and the values of the two previous 
elements). This makes the code larger and less comprehensible. 

This is why Python offers a much more effective, convenient, and elegant way of writing 
iterators. 

The concept is fundamentally based on a very specific and powerful mechanism provided by 
the 𝑦𝑖𝑒𝑙𝑑 keyword. 

def fun(n): 

    for i in range(n): 

        return i 

It looks strange, doesn't it? It's clear that the 𝑓𝑜𝑟 loop has no chance to finish its first 
execution, as the 𝑟𝑒𝑡𝑢𝑟𝑛 will break it irrevocably. 

Moreover, invoking the function won't change anything - the 𝑓𝑜𝑟 loop will start from scratch 
and will be broken immediately. 

We can say that such a function is not able to save and restore its state between subsequent 
invocations. 

This also means that a function like this cannot be used as a generator. 

 

def powers_of_2(n): 

    power = 1 

    for i in range(n): 

        yield power 

        power *= 2 

 

for v in powers_of_2(8): 

    print(v) 

This can print the first 8 powers of 2. 

 
Generators can also be used within list comprehensions. 

def powers_of_2(n): 

    power = 1 

    for i in range(n): 

        yield power 

        power *= 2 

 

t = [x for x in powers_of_2(5)] 



print(t) # [1, 2, 4, 8, 16] 

 

The 𝑙𝑖𝑠𝑡() functions can transform a series of subsequent generator invocations into a real 
list. 

def powers_of_2(n): 

    power = 1 

    for i in range(n): 

        yield power 

        power *= 2 

 

t = list(powers_of_2(3)) 

print(t) # [1, 2, 4] 

 

The context created by the 𝑖𝑛 operator allows you to use a generator too. 

def powers_of_2(n): 

    power = 1 

    for i in range(n): 

        yield power 

        power *= 2 

 

for i in powers_of_2(4): 

    print(i) 

 

Here is the upgraded version of the Fibonacci number generator, it looks much better than 
the objective version. 

def fibonacci(n): 

    p = pp = 1 

    for i in range(n): 

        if i in [0, 1]: 

            yield 1 

        else: 

            n = p + pp 

            pp, p = p, n 

            yield n 

 

fibs = list(fibonacci(10)) 

print(fibs) # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 

 

You should be able to remember the rules governing the creation and use of a very special 
Python phenomenon named list comprehension - a simple and very impressive way of 
creating lists and their contents. 

list_1 = [] 

for ex in range(6): 

    list_1.append(10 ** ex) 

 

list_2 = [10 ** ex for ex in range(6)] 

print(list_1) # [1, 10, 100, 1000, 10000, 100000] 



print(list_2) # [1, 10, 100, 1000, 10000, 100000] 

Here is a quick recap. 

There are two parts inside the code, both creating a list containing a few of the first natural 
powers of ten. 

The former uses a routine way of utilizing the 𝑓𝑜𝑟 loop, while the latter makes use of the list 
comprehension and builds the list in situ, without needing a loop, or any other extended 
code. 

It looks like the list is created inside itself - it's not true, of course, as Python has to perform 
nearly the same operations as in the first snippet, but it is indisputable that the second 
formalism is simply more elegant, and lets the reader avoid any unnecessary details. 

 

the_list = [1 if x % 2 == 0 else 0 for x in range(10)] 

print(the_list) # [1, 0, 1, 0, 1, 0, 1, 0, 1, 0] 

 

the_generator = (1 if x % 2 == 0 else 0 for x in range(10)) 

for v in the_generator: 

    print(v, end = " ") # 1 0 1 0 1 0 1 0 1 0 

print() 

Now look at the code above and see if you can find the detail that turns a list comprehension 
into a generator. 

It's the parentheses. 

The brackets make a comprehension, the parentheses make a generator. 

 

How can you know that the second assignment creates a generator, not a list? 

print(len(the_list)) # 10 

print(len(the_generator)) # TypeError 

 

Of course, saving either the list or the generator is not necessary - you can create them 
exactly in the place where you need them - just like here: 

for v in [1 if x % 2 == 0 else 0 for x in range(10)]: 

    print(v, end = " ") 

print() 

 

for v in (1 if x % 2 == 0 else 0 for x in range(10)): 

    print(v, end = " ") 

print() 

# 1 0 1 0 1 0 1 0 1 0  

# 1 0 1 0 1 0 1 0 1 0 

Note: The same appearance of the output doesn't mean that both loops work in the same 
way. In the first loop, the list is created (and iterated through) as a whole - it actually exists 
when the loop is being executed. 

In the second loop, there is no list at all - there are only subsequent values produced by the 
generator, one by one. 

 

The 𝐿𝑎𝑚𝑏𝑑𝑎 function 
The 𝑙𝑎𝑚𝑏𝑑𝑎 function is a concept borrowed from mathematics, more specifically, from a 



part called the 𝐿𝑎𝑚𝑏𝑑𝑎 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠, but these two phenomena are not the same. 

Mathematicians use the Lambda calculus in many formal systems connected with logic, 
recursion, or theorem provability. Programmers use the 𝑙𝑎𝑚𝑏𝑑𝑎 function to simplify the 
code, to make it clearer and easier to understand. 

A 𝑙𝑎𝑚𝑏𝑑𝑎 function is a function without a name (you can also call it an anonymous 
function). Of course, such a statement immediately raises the question: how do you use 
anything that cannot be identified? 

Fortunately, it's not a problem, as you can name such a function if you really need, but, in 
fact, in many cases the 𝑙𝑎𝑚𝑏𝑑𝑎 function can exist and work while remaining fully incognito. 

The declaration of the 𝑙𝑎𝑚𝑏𝑑𝑎 function: 

lambda parameters: experssion 

Such a clause returns the value of the expression when taking into account the current 
value of the current 𝑙𝑎𝑚𝑏𝑑𝑎 argument. 

two = lambda: 2 

sqr = lambda x: x * x 

pwr = lambda x, y: x ** y 

 

for a in range(-2, 3): 

    print(sqr(a), end = " ") 

    print(pwr(a, two())) 

# 4 4 

# 1 1 

# 0 0 

# 1 1 

# 4 4 

Here is an example that uses three 𝑙𝑎𝑚𝑏𝑑𝑎 functions. 

• The first 𝑙𝑎𝑚𝑏𝑑𝑎 is an anonymous parameterless function that always returns 2. As 
we've assigned it to a variable named 𝑡𝑤𝑜, we can say that the function is not 
anonymous anymore, and we can use the name to invoke it. 

• The second one is a one-parameter anonymous function that returns the value of its 
squared argument. We've named it as such, too. 

• The third 𝑙𝑎𝑚𝑏𝑑𝑎 takes two parameters and returns the value of the first one 
raised to the power of the second one. The name of the variable which carries the 
𝑙𝑎𝑚𝑏𝑑𝑎 speaks for itself. We don't use pow to avoid confusion with the built-in 
function of the same name and the same purpose. 

However, you may ask. 

Where is the benefit of using such? 

 

The most interesting part of using lambdas appears when you can use them in their pure 
form - as anonymous parts of code intended to evaluate a result. 

Imagine that we need a function (we'll name it 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) which prints the values of a 
given (other) function for a set of selected arguments. 

We want 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 to be universal - it should accept a set of arguments put in a list 
and a function to be evaluated, both as arguments - we don't want to hardcode anything. 

def print_function(args, fun): 

    for x in args: 

        print('f(', x,')=', fun(x), sep='') 



 

def poly(x): 

    return 2 * x ** 2 - 4 * x + 2 

 

print_function([x for x in range(-2, 3)], poly) 

Here is the implemented code. 

The 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() function takes two parameters: 

1. The first, a list of arguments for which we want to print the results. 
2. The second, a function which should be invoked as many times as the number of 

values that are collected inside the first parameter. 

We've also defined a function named 𝑝𝑜𝑙𝑦(), this is the function whose values we're going 
to print. The calculation the function performs isn't very sophisticated - it's the polynomial 
(hence its name) of a form: 

𝑓(𝑥) = 2𝑥2 − 4𝑥 + 2 

The name of the function is then passed to the 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() along with a set of five 
different arguments - the set is built with a list comprehension clause. 

f(-2)=18 

f(-1)=8 

f(0)=2 

f(1)=0 

f(2)=2 

This is the expected output. 

 

Can we avoid defining the 𝑝𝑜𝑙𝑦() function, as we're not going to use it more than once? Yes, 
we can - this is the benefit a lambda can bring. 

def print_function(args, fun): 

    for x in args: 

        print('f(', x,')=', fun(x), sep='') 

 

print_function([x for x in range(-2, 3)], lambda x: 2 * x ** 2 - 4 * x + 2) 

This code here gives the same output and result as the previous one. 

The 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() has remained exactly the same, but there is no 𝑝𝑜𝑙𝑦() function. We 
don't need it anymore, as the polynomial is now directly inside the 𝑝𝑟𝑖𝑛𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() 
invocation in the form of a lambda defined in the following way: 

lambda x: 2 * x ** 2 - 4 * x + 2 

The code has become shorter, clearer, and more legible. 

 

Lambdas and the 𝑚𝑎𝑝() function Map and Filter Explained - YT 

Let me show you another place where lambdas can be useful. We'll start with a description 
of 𝑚𝑎𝑝(), a built-in Python function. Its name isn't too descriptive, its idea is simple, and the 
function itself is really usable. 

In the simplest of all possible cases, the 𝑚𝑎𝑝() function: 

map(function, list) 

Takes two arguments: 

1. A function 
2. A list 

https://youtu.be/hUes6y2b--0


The above description is extremely simplified, as: 

• The second 𝑚𝑎𝑝() argument may be any entity that can be iterated (e.g., a tuple, or 
just a generator). 

• 𝑚𝑎𝑝() can accept more than two arguments. 

 

The 𝑚𝑎𝑝() function applies the function passed by its first argument to all its second 
argument's elements, and returns an iterator delivering all subsequent function results. 

You can use the resulting iterator in a loop, or convert it into a list using the 𝑙𝑖𝑠𝑡() function. 

list_1 = [x for x in range(5)] 

list_2 = list(map(lambda x: 2 ** x, list_1)) 

print(list_2) # [1, 2, 4, 8, 16] 

 

for x in map(lambda x: x * x, list_2): 

    print(x, end=' ') # 1 4 16 64 256 

print() 

We've used two lambdas in the code here. 

1. Build the 𝑙𝑖𝑠𝑡_1 with values from 0 to 4. 
2. Next, use 𝑚𝑎𝑝 along with the first 𝑙𝑎𝑚𝑏𝑑𝑎 to create a new list in which all elements 

have been evaluated as 2 raised to the power taken from the corresponding 
element from 𝑙𝑖𝑠𝑡_1. 

3. 𝑙𝑖𝑠𝑡_2 is printed. 
4. In the next step, use the 𝑚𝑎𝑝() function again to make use of the generator it 

returns and to directly print all the values it delivers; as you can see, we've engaged 
the second 𝑙𝑎𝑚𝑏𝑑𝑎 here - it just squares each element from 𝑙𝑖𝑠𝑡_2. 

 

Lambdas and the 𝑓𝑖𝑙𝑡𝑒𝑟() function 

𝑓𝑖𝑙𝑡𝑒𝑟() expects the same kind of arguments as 𝑚𝑎𝑝(), but does something different - it 
filters its second argument while being guided by directions flowing from the function 
specified as the first argument (the function is invoked for each list element, just like in 
𝑚𝑎𝑝()). 
The elements which return 𝑇𝑟𝑢𝑒 from the function pass the filter - the others are rejected. 

from random import seed, randint 

seed() 

data = [randint(-10, 10) for x in range(5)] 

filtered = list(filter(lambda x: x > 0 and x % 2 == 0, data)) 

 

print(data) # [2, -5, 10, 6, -6] 

print(filtered) # [2, 10, 6] 

Here is an example, and your output might be different from mine, as we used the 
𝑟𝑎𝑛𝑑𝑖𝑛𝑡() function. 

The list is filtered, and only the numbers which are even and greater than zero are accepted. 

 

A brief look at closures 
Let's start with a definition: closure is a technique which allows the storing of values in 
spite of the fact that the context in which they have been created does not exist anymore. 

Intricate? 



def outer(par): 

    loc = par 

 

var = 1 

outer(var) 

print(var) 

print(loc) 

The code here is obviously erroneous. 

The last two lines will cause a 𝑁𝑎𝑚𝑒𝐸𝑟𝑟𝑜𝑟 exception - neither 𝑝𝑎𝑟 nor 𝑙𝑜𝑐 is accessible 
outside the function. Both the variables exist when and only when the 𝑜𝑢𝑡𝑒𝑟() function is 
being executed. 

def outer(par): 

    loc = par 

 

    def inner(): 

        return loc 

    return inner 

 

var = 1 

fun = outer(var) 

print(fun()) # 1 

I’ve changed the code significantly. 

There is a brand-new element in it - a function (named 𝑖𝑛𝑛𝑒𝑟) inside another function 
(named 𝑜𝑢𝑡𝑒𝑟). 

How does it work? Just like any other function except for the fact that 𝑖𝑛𝑛𝑒𝑟() may be 
invoked only from within 𝑜𝑢𝑡𝑒𝑟(). We can say that 𝑖𝑛𝑛𝑒𝑟() is 𝑜𝑢𝑡𝑒𝑟()'s private tool - no 
other part of the code can access it. 

The 𝑖𝑛𝑛𝑒𝑟() function returns the value of the variable accessible inside its scope, as 𝑖𝑛𝑛𝑒𝑟() 
can use any of the entities at the disposal of 𝑜𝑢𝑡𝑒𝑟(). 

The 𝑜𝑢𝑡𝑒𝑟() function returns the 𝑖𝑛𝑛𝑒𝑟() function itself. More precisely, it returns a copy of 
the 𝑖𝑛𝑛𝑒𝑟() function, the one which was frozen at the moment of 𝑜𝑢𝑡𝑒𝑟()'s invocation; the 
frozen function contains its full environment, including the state of all local variables, which 
also means that the value of 𝑙𝑜𝑐 is successfully retained, although 𝑜𝑢𝑡𝑒𝑟() ceased to exist a 
long time ago. 

The function returned during the 𝑜𝑢𝑡𝑒𝑟() invocation is a closure. 

 

A closure has to be invoked in exactly the same way in which it has been declared. 

def make_closure(par): 

    loc = par 

 

    def power(p): 

        return p ** loc 

    return power 

 

fsqr = make_closure(2) 

fcub = make_closure(3) 

 



for i in range(5): 

    print(i, fsqr(i), fcub(i)) 

It is fully possible to declare a closure equipped with an arbitrary number of parameters, 
e.g., one, just like the 𝑝𝑜𝑤𝑒𝑟() function. 

This means that the closure not only makes use of the frozen environment, but it can also 
modify its behavior by using values taken from the outside. 

This example shows one more interesting circumstance - you can create as many closures as 
you want using one and the same piece of code. This is done with a function named 
𝑚𝑎𝑘𝑒_𝑐𝑙𝑜𝑠𝑢𝑟𝑒(). Note: 

• The first closure obtained from 𝑚𝑎𝑘𝑒_𝑐𝑙𝑜𝑠𝑢𝑟𝑒() defines a tool squaring its 
argument. 

• The second one is designed to cube the argument. 

Expected output: 

0 0 0 

1 1 1 

2 4 8 

3 9 27 

4 16 64 

 

 


